



Ministry of Higher Education and  
Scientific Research - Iraq

University of Warith Al\_Anbiyaa  
Engineering College  
Biomedical Engineering Department



## MODULE DESCRIPTION FORM

| Module Information                 |                       |                     |                               |                                             |
|------------------------------------|-----------------------|---------------------|-------------------------------|---------------------------------------------|
| Module Title                       | Mechanics of Material |                     |                               | Module Delivery                             |
| Module Type                        | Basic                 |                     |                               | <input checked="" type="checkbox"/> Theory  |
| Module Code                        | WBM-31-02             |                     |                               | <input checked="" type="checkbox"/> Lecture |
| ECTS Credits                       | 3                     |                     |                               | <input checked="" type="checkbox"/> Lab     |
| SWL (hr/sem)                       | 150                   |                     |                               | <input type="checkbox"/> Tutorial           |
| Module Level                       |                       |                     | Semester of Delivery          | 1                                           |
| Administering Department           |                       | BME                 | College                       | ENG                                         |
| Module Leader                      | Natiq Aziz Omran      |                     | e-mail                        | Nataq.az@uowa.edu.iq                        |
| Module Leader's Acad. Title        |                       | Assistant Professor | Module Leader's Qualification | Ph.D.                                       |
| Module Tutor                       |                       |                     | e-mail                        |                                             |
| Peer Reviewer Name                 |                       |                     | e-mail                        |                                             |
| Scientific Committee Approval Date |                       |                     | Version Number                | 1.0                                         |

| Relation with other Modules |      |  |          |
|-----------------------------|------|--|----------|
| Prerequisite module         | None |  | Semester |
| Co-requisites module        | None |  | Semester |

| Module Aims, Learning Outcomes and Indicative Contents |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Module Aims</b>                                     | <ol style="list-style-type: none"> <li>1. To develop problem solving skills and understanding of the behavior of engineering materials under different loading conditions.</li> <li>2. To understand stress, strain, and deformation in structural members.</li> <li>3. This course deals with the basic concepts of strength of materials.</li> <li>4. This is a fundamental subject for mechanical and biomedical engineering applications.</li> <li>5. To understand axial, torsional, and bending stress problems.</li> <li>6. To perform stress and deformation analysis in beams, shafts, and structural elements.</li> <li>7. To apply basic failure theories and material properties in engineering analysis.</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>Module Learning Outcomes</b>                        | <p>After successfully completing this module, students will be able to:</p> <ol style="list-style-type: none"> <li>1. Explain the fundamental concepts of stress, strain, and deformation in engineering materials.</li> <li>2. Identify and classify different types of loads and their effects on structural members.</li> <li>3. Analyze axial stress and strain in bars subjected to tensile and compressive forces.</li> <li>4. Evaluate torsional stresses and angles of twist in circular shafts.</li> <li>5. Determine bending stresses and normal stresses in beams subjected to transverse loading.</li> <li>6. Analyze shear stresses in beams and thin-walled members.</li> <li>7. Apply the concepts of elastic behavior, Hooke's law, and material properties such as Young's modulus, shear modulus, and Poisson's ratio.</li> <li>8. Calculate thermal stresses and strains resulting from temperature changes.</li> <li>9. Assess combined stresses and determine principal stresses and maximum shear stresses.</li> <li>10. Use appropriate failure theories to predict material behavior under different loading conditions.</li> <li>11. Solve engineering problems related to strength and deformation of materials using analytical methods.</li> <li>12. Demonstrate problem-solving skills relevant to mechanical and biomedical engineering applications.</li> </ol> |
| <b>Indicative Contents</b>                             | <p>Indicative content includes the following:</p> <p>Strength of Materials Theory</p> <p>Stress and strain concepts, types of stress and strain, mechanical properties of materials. Axial loading of members, elastic deformation and Hooke's law. Torsion of circular shafts, angle of twist and shear stress. Bending of beams, bending stress and flexural formula. Shear stress in beams. Combined stresses, principal stresses and failure theories. Thermal stresses and strains.</p>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| Learning and Teaching Strategies |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Strategies</b>                | The main strategy adopted in delivering this module is to enhance students' understanding of the fundamental principles of strength of materials through lectures and problem-solving activities. Emphasis is placed on developing analytical skills by applying theoretical concepts to practical engineering problems. Lectures are used to explain key topics such as stress, strain, torsion, bending, and material behavior under different loading conditions. Problem-solving exercises are integrated into the teaching process to improve students' ability to analyze and solve numerical problems. Continuous assessment methods, including quizzes, assignments, and examinations, are used to evaluate students' progress and reinforce learning outcomes. This approach encourages active student participation and supports the development of critical thinking and independent learning skills. |

| Student Workload (SWL)          |     |                               |   |
|---------------------------------|-----|-------------------------------|---|
| <b>Structured SWL (h/sem)</b>   | 123 | <b>Structured SWL (h/w)</b>   | 6 |
| <b>Unstructured SWL (h/sem)</b> | 27  | <b>Unstructured SWL (h/w)</b> | 4 |
| <b>Total SWL (h/sem)</b>        | 150 |                               |   |

| Module Evaluation           |                        |             |                  |            |                           |
|-----------------------------|------------------------|-------------|------------------|------------|---------------------------|
|                             |                        | Time/Number | Weight (Marks)   | Week Due   | Relevant Learning Outcome |
| <b>Formative assessment</b> | <b>Quizzes</b>         | 2           | 10% (10)         | 11, 10     | LO #1, 2,3 and 4          |
|                             | <b>Assignments</b>     | 2           | 10% (10)         | 2, 12      | LO # 5, 6 and 7           |
|                             | <b>Projects / Lab.</b> | 1           | 10% (10)         | Continuous | All                       |
|                             | <b>Report</b>          | 1           | 10% (10)         | 13         | LO # 7, 8 and 10          |
| <b>Summative assessment</b> | <b>Midterm Exam</b>    | 3 hrs.      | 10% (10)         | 7          | LO # 1-4                  |
|                             | <b>Final Exam</b>      | 3 hrs.      | 50% (50)         | 16         | All                       |
| <b>Total assessment</b>     |                        |             | 100% (100 Marks) |            |                           |

| Delivery Plan (Weekly Syllabus)      |                                                                                                                                     |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|                                      | Material Covered                                                                                                                    |
| <b>Week 1</b>                        | Units and common principles and Analysis of Internal Forces and Stresses                                                            |
| <b>Week 2</b>                        | Normal stress and Shear stress and safety Factor                                                                                    |
| <b>Week 3</b>                        | Torsion of Circular Shaft and Torsion of non- circular section                                                                      |
| <b>Week 4</b>                        |                                                                                                                                     |
| <b>Week 5</b>                        | Current divider rule, open and short circuits.                                                                                      |
| <b>Week 6</b>                        | Series-Parallel Networks, series-parallel DC networks.                                                                              |
| <b>Week 7</b>                        | Mid-term Exam                                                                                                                       |
| <b>Week 8</b>                        | Thin walled pressure vessels                                                                                                        |
| <b>Week 9</b>                        | Simple Strain and Deformations of Axially Loaded Members                                                                            |
| <b>Week 10</b>                       | Deformation of axially loaded members                                                                                               |
| <b>Week 11</b>                       | Displacement Diagram                                                                                                                |
| <b>Week 12</b>                       | Statically indeterminate problems                                                                                                   |
| <b>Week 13</b>                       | Thermal stresses and strains                                                                                                        |
| <b>Week 14</b>                       | The Columns, Definition, The Critical load of column, Radius of Gyration.                                                           |
| <b>Week 15</b>                       | Combined Stresses, Combined axial and bending loading, Combined axial and torsional loading, Combined bending and torsional loading |
| <b>Week 16</b>                       | Preparatory week before the final Exam                                                                                              |
| Delivery Plan (Weekly Lab. Syllabus) |                                                                                                                                     |
|                                      | Material Covered                                                                                                                    |
| <b>Week 1</b>                        | Lab 1: Introduction to mechanics of materials                                                                                       |
| <b>Week 2</b>                        | Lab 2: loading effects on material                                                                                                  |
| <b>Week 3</b>                        | Lab 3: stress                                                                                                                       |
| <b>Week 4</b>                        | Lab 4: strain                                                                                                                       |
| <b>Week 5</b>                        | Lab 5: bending                                                                                                                      |
| <b>Week 6</b>                        | Lab 6: relation between stress and strain                                                                                           |
| <b>Week 7</b>                        | Lab 7: torsion                                                                                                                      |

| Learning and Teaching Resources |                                                                                                                                                                                                           |                           |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
|                                 | Text                                                                                                                                                                                                      | Available in the Library? |
| Required Texts                  | Strength of Materials, Third and Fourth Edition.<br>Ferdinand and L.Singer Andrew Pytel                                                                                                                   | Yes                       |
| Recommended Texts               | An Introduction to the Mechanics of Elastic and Plastic Deformation of Solids and Structural Materials THIRD EDITION E. J. HEARN Ph.D., B.Sc. (Eng.) Hons., C.Eng., F.I.Mech.E., F.I.Prod.E., F.I.Diag.E. | Yes                       |
| Websites                        | <a href="http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IITROORKEE">http://www.nptel.iitm.ac.in/courses/Webcourse-contents/IITROORKEE</a>                                                         |                           |

| Grading Scheme                                                                                                                                                                                                                                                                                                                                                                       |                  |           |                                       |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------|---------------------------------------|
| Group                                                                                                                                                                                                                                                                                                                                                                                | Grade            | Marks (%) | Definition                            |
| Success Group<br>(50 - 100)                                                                                                                                                                                                                                                                                                                                                          | A - Excellent    | 90 - 100  | Outstanding Performance               |
|                                                                                                                                                                                                                                                                                                                                                                                      | B - Very Good    | 80 - 89   | Above average with some errors        |
|                                                                                                                                                                                                                                                                                                                                                                                      | C - Good         | 70 - 79   | Sound work with notable errors        |
|                                                                                                                                                                                                                                                                                                                                                                                      | D - Satisfactory | 60 - 69   | Fair but with major shortcomings      |
|                                                                                                                                                                                                                                                                                                                                                                                      | E - Sufficient   | 50 - 59   | Work meets minimum criteria           |
| Fail Group<br>(0 - 49)                                                                                                                                                                                                                                                                                                                                                               | FX – Fail        | (45-49)   | More work required but credit awarded |
|                                                                                                                                                                                                                                                                                                                                                                                      | F – Fail         | (0-44)    | Considerable amount of work required  |
| <b>Note:</b> Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic rounding outlined above. |                  |           |                                       |