

Unit Description Form

Course Description Form

Faculty of Engineering / Department of Biomedicine

Unit Information

Course Information

Unit Type	Electromagnetics			<input checked="" type="checkbox"/> نظريه <input checked="" type="checkbox"/> حاضر <input checked="" type="checkbox"/> المختبر <input type="checkbox"/> تعليمي <input type="checkbox"/> عملي <input type="checkbox"/> Seminar
Unit Code	BME-312			
ECTS Credits	3			
SWL (ساعة) / SEM)	150			
Unit level		3	Delivery Semester	1
		Biomedical Engineering	College	College of Engineering
Unit Commander	Saad M. Sarhan		E-mail Address	saad.mah@uowa.edu.iq
Title of Unit Commander		Assistant Doctor	Unit Commander Qualifications	Doctor
Unit Teacher			E-mail Address	
Peer Reviewer Name			E-mail Address	
Date of accreditation of the Scientific Committee		26/9/2025	Version number	1.0

Unit objectives, learning outcomes and how-to contents

Course objectives, learning outcomes and instructional contents

Objectives of the Unit

Course Objectives	<ul style="list-style-type: none"> <input type="checkbox"/> Understand the fundamental concepts of scalars, vectors, vector algebra, and different coordinate systems. <input type="checkbox"/> Apply Coulomb's Law and compute electric field intensity for different charge distributions (line, surface, and volume). <input type="checkbox"/> Understand electric flux density, Gauss's Law, and the concept of divergence. <input type="checkbox"/> Use the Del operator and apply the Divergence Theorem in field analysis. <input type="checkbox"/> Analyze the relationship between electric potential and energy in electrostatic fields.
Unit Learning Outcomes Learning outcomes of the course	<p>By the end of this unit, students will be able to:</p> <ol style="list-style-type: none"> 1. An ability to identify, formulate, and solve engineering problems by applying principles of engineering, science, and mathematics. 2. An ability to apply engineering design process to produce solutions that meet specified needs with consideration of public health, safety, and global, cultural, social, environmental, economic, and other factors as appropriate to the discipline. 3. An ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw a conclusion. 4. An ability to recognize the ongoing need to acquire new knowledge, to choose appropriate learning strategies, and to apply this knowledge
Indicative Contents Indicative Contents	<p>1. Overview of Scalars, Vectors, Vector Algebra, and Coordinate Systems</p> <ul style="list-style-type: none"> • Definitions of scalar and vector quantities. • Vector operations: addition, subtraction, dot product, and cross product. • Coordinate systems: <ul style="list-style-type: none"> ◦ Cartesian ◦ Cylindrical ◦ Spherical • Coordinate transformations. <p>2. Coulomb's Law and Electric Field Intensity + Charge Distributions</p> <ul style="list-style-type: none"> • Coulomb's Law for electric force. • Electric field intensity due to point charges. • Electric field for: <ul style="list-style-type: none"> ◦ Line charge distributions ◦ Surface charge distributions ◦ Volume charge distributions

- Examples and tutorial problems.

3. Electric Flux Density, Gauss's Law, and Divergence

- Definition of electric flux density \mathbf{D} and its relation to \mathbf{E} .
- Gauss's Law and its mathematical forms.
- Applying Gauss's Law to symmetric field problems.
- Divergence and its physical interpretation in electrostatics.

4. Del Operator and Divergence Theorem

- Definition and components of the **Del (∇) operator**.
- The divergence operation ($\nabla \cdot \mathbf{A}$).
- Divergence Theorem and applications in field analysis.

5. Energy and Potential

- Electric potential and its relation to the electric field.
- Calculating potential for different charge distributions.
- Energy stored in the electric field.
- Relationship among work, potential, and electric field.

Learning and Teaching Strategies

Learning and Teaching Strategies

Strategies

- The instructor delivers detailed theoretical lectures.
- The instructor assigns periodic reports on the fundamental topics of the course.
- Continuous assessment: conducting short quizzes and regular exercises to monitor students' progress and identify areas that need reinforcement.
- Explanation and discussion: encouraging students to explain their solutions and reasoning to promote deep understanding and improve communication skills

Student Workload (SWL)

The student's academic load is calculated for 15 weeks

SWL منظم (h / sem)	78	SWL regulator(h/s) Regular student load per week	4
SWL غير منظم (h / sem)	72	Unregulated SWL (h/s) Irregular student academic load per week	4

Unit Evaluation

Course Evaluation

As		Time/Number	Weight (tags)	Week due	Related learning outcomes
Formative Assessment	Contests	2	10% (10)	5, 10	LO #1 , 2, 10 and 11
	Assignments	2	10% (10)	2, 12	LO #3 , 4, 6 and 7
	Projects /Laboratory.	1	10% (10)	continuous	every
	report	1	10% (10)	13	LO #5 , 8 and 10
Final Assessment	Midterm Exam	2 hr	10% (10)	7	LO #1-7
	Final Exam	2 hours	50% (50)	16	every
Overall Rating		100% (100 degree)			

Delivery Plan (Weekly Curriculum)

Theoretical Weekly Curriculum

week	Covered Material
Week 3+2+1	Overview about scalar, vector, vector algebra, and types of coordinate systems.
Week 4+5	Coulomb's Law and Electric Field Intensity, line charge, surface charge, and volume charge, Tutorial
Week 6+7+8+9	Electric Flux Density, Gauss's Law, and Divergence
Week 10+11+12	Del operator and Divergence Theorem
Week 13+14	Energy and Potential
Week 15	Maxwel Equatiions

Learning and Teaching Resources Learning and Teaching Resources		
	text	Available in the library?
Required texts	Electricity and Magnetism by Purcell	Yes
Recommended texts		Yes
Websites		

Grading chart Grading chart				
group	degree	Appreciation	Tags (%)	definition
An-Najah Group (50 - 100)	A - Excellent	privilege	90 - 100	Outstanding Performance
	B - Very Good	Very good	80 - 89	Above average with some errors
	C - Good	Good	70 - 79	Proper work with noticeable errors
	D - Satisfactory	medium	60 - 69	Fair but with significant shortcomings
	E - sufficient	Acceptable	50 - 59	The work meets the minimum standards
Group failure (0 - 49)	FX - Failed	Deposit (in processing)	(45-49)	More work required but credit granted
	F - Failed	Failure	(0-44)	Large amount of work required

Note: Signs that are more than 0.5 decimal places greater than or below the full mark will be rounded higher or lower (for example, a score of 54.5 will be rounded to 55, while a mark of 54.4 will be rounded to 54. The university has a policy of not tolerating "imminent traffic failure", so the only modification to the marks granted by the original mark(s) will be the automatic rounding described above.