MODULE DESCRIPTION FORM

Module Information

Module Title Object-oriented programming I Module Delivery
MOdule Type COl‘e Lecture
Module Code IT2112 XPractical
ECTS Credits 6

SWL (hr/sem) 150

Module Level UG2 Semester of Delivery 1
Administering Department Information Technology | College | College of Science
Module Leader | Mohsin Hassan Hussein Abbas e-mail | Mmohsinha@uowa.edu.iq

Module Leader’s Acad. Title | Asst. Professor

Module Leader’s Qualification | Ph.D.

Module Tutor Mohsen Hassan Hussein Abbas | e-mail mohsin.ha@uowa.edu.iq
. Asst. Prof Haider . . .
Peer Reviewer Name e-mail
Mohammed Ali hayder.alghanami@uowa.edu.iq
Scientific Committee Version
Approval Date 2025-09-17 Number V1o

Relation with other Modules

Pre-requisite module

Programming Fundamentals 2

Semester

Co-requisites module

Programming Fundamentals 2

Semester 2

¢

< W;“ =yl 3““@
poladi dulsn °
beglandi o opisal aud

Department Head Approval

Dean of the College Approval

mailto:mohsin.ha@uowa.edu.iq
mailto:mohsin.ha@uowa.edu.iq
mailto:hayder.alghanami@uowa.edu.iq

Module Aims, Learning Outcomes and Indicative Contents

1. Provide a sound knowledge of the underlying principles and experience in the
practical application of this course is essential for any information technology
specialist.

. 2. extend students with procedural programming knowledge and skills in the object-
Module Aims s .
oriented paradigm and builds experience with interpreted languages to introduce
compiled languages.
3. In addition to further shaping a solid development methodology, the course
prepares students for continued investigation into advanced programming topics.
4. develop a wide range of software solutions for real-world scenarios.
On completion of this course students will be able to:
1. identify and demonstrate an understanding of the hardware of a computer;
2. comprehend what programming is and what a programming language does;
. 3. know about the evolution of C++;
Module Learning . ,
4. identify and design suitable classes and class hierarchies and code class
Outcomes : . :
implementations in C++;
5. design and develop C++ programs using classes and class libraries;
6. apply the principles of information hiding using C++ facilities for private and
protected class attributes;
7. employ C++ facilities for dynamic storage;
8. employ C++ facilities such as operator overloading, pointers, and references;
9. develop programs using the C++ Standard for real-world.
Topics
1 scription Weighting (75%)
1. Overview of Object Oriented Programming,
C++ or Python Basics 5.00
2. Control flow 5.00
3. Function Basics 5.00
4. Parameters and Overloading 10.00
5. Arrays and Structures 10.00
Indicative Contents
6. Objects and Classes 10.00
7. Constructors and Destructors 5.00
8. Operator Overloading 5.00
9. Friends and References 10.00
10. Strings and Pointer 5.00
11. Separate Compilation and Namespace 5.00

Learning and Teaching Strategies

Strategies

Overview Strategies
Object-oriented software development has become a standard methodology throughout the
software engineering discipline. Therefore, a solid grasp of object-oriented programming is
essential for any information technology specialist. While there are a variety of object-oriented
programming languages available, C++ or Python are the most widely used in this course.

This course extends the student's basic procedural design and programming knowledge and
skills into the object-oriented paradigm and builds on previous experience with interpreted
languages to introduce compiled languages. In addition to further shaping a solid development
methodology, the course prepares students for continued investigation into advanced
programming topics.

The students will be expected to learn and apply the basic concepts of object oriented design
and programming through giving lectures, practical exercises within the laboratories,
assignments about some specific topics, and small projects. Key software engineering principles
such as decomposition and component re-use will also be emphasized.

Student Workload (SWL)

Structured SWL (h/sem)

7c Structured SWL (h/w)

Unstructured SWL (h/sem) Unstructured SWL (h/w)

72 5

Student workload expectations (SWL &USWL)

To do well in this subject, students are expected to commit approximately 10 hours per week including class
contact hours, independent study, and all assessment tasks. If you are undertaking additional activities, the
weekly workload hours may vary.

Total SWL (h/sem)

147 + 3 final = 150

Module Evaluation

Time/ . Relevant Learning
Weight (Marks) Week Due
Number Outcome
Quizzes 5 10% (8) 3,,69,11,13 (1,234
OnSite 5 10% (5) 3,5,8,10,11 |All
T T Assignments
. HomeWork 5 10% (7) 2,5,8,10,12 |All
assessment - "project 1 10% (10) 12 All
Labs 5 10% (15) 357911 |All
Summative | Midterm Exam 2hr 10% (10) 7
assessment | Final Exam 3hr 50% (50) 16
Total assessment 100% (100 Marks)
Delivery Plan (WeeKkly Syllabus)
. Weighting
Material Covered (30+5=35%)
The fundamental concepts of programming, including procedural and object-
oriented programming will be introduced. Also, consider the basic principles
Week 1 behind object-oriented programming techniques, including objects, classes, 2
inheritance, and polymorphism. Then you will get started in programming
environment by applying what you have learned.
Introduction about the basic logic components used in programs that called
Week 2 control structures. It includes sequence structure, a selection structure, and 2
loop structure, with examples.
Learn about function features, including passing arguments, returning values,
Week 3 : : 2
prototypes, and recursion, with examples.
Present specific features of functions, such as function overloading and
Week 4 . 2
reference parameters, with examples.
Introduce arrays concept with a specific element in an array, index, memory
Week 5 locations, the lowest address, highest address, arrays dimensions, arrays and 2
pointers, with examples
Overview about structures, structure declaration forms, and structure
Week 6 . 2
members, with examples.
Week 7 Mid Term Exam Revision 2
Introduction about objects and classes, class declaration, Object declaration,
Week 8 : 2
with examples.
Understanding constructors and destructors, constructors and destructors
Week 9 : . 2
declaration with examples.
Learn about overloading operators, operator declaration, unary operators,
Week 10 . 2
binary operators, and operator arguments.
Learn what a friend is, Declare a friend function, and Examine the benefits of
Week 11 . . . 2
Use a friend function to access data from two classes, with examples.
Understanding the three ways that a reference can be used: as a function
Week 12 parameter, as a function return value, or as a stand-alone reference, with 2
examples.
Week 13 Learn al?out the string class , Learn about pointers, string and pointers 2
declaration, with examples.

Describes namespaces and several other advanced features, including
Week 14 conversion functions, explicit constructors, const and volatile member 2
functions, the asm keyword, and linkage specifications, with examples.
Week 15 Students course workload evaluation. 2
Week 16 Prepare to the final Exam 3
Delivery Plan (Weekly Lab. Syllabus)
Material Covered Weighting (45%)
- Prepare OOP environment, overview about unified
modeling language (UML) diagram.
Week 1 -Lab 1 - Accessto a standard C++ or Python compiler 3
- Linux g++ compiler and its equivalent MinGW running
under windows.
- learn how to create a main () function, work with
variables and constants, and create comments.
Week 2 - Lab 2 - learn how to produce output and process input with 3
Python or C++, and how to create first objects.
- Basic Functions and Pointers,
Week 3 - Lab 3 - Implement recursion function, 3
- Understand the manipulation on pointers.
- Understand function call by value method of parameter
Week 4 - Lab 4 passing
- Understand Pass parameters by reference method 3
- Study the use of structures
Week 5 - Lab 5 - Understand array processing in C++ or Python
- Understand heterogeneous data types 3
Week 6 - Lab 6 - Introduction to Classes and Objects 3
Week 7 - Lab 7 - Labs exam1 with evaluation 3
Week 8 - Lab 8 - Access Specifiers, Constructors and Destructors 3
Week 9 - Lab 9 - Constructor Overloading and Copy Constructors 3
Week 10 - Lab 10 - Introduction to Operator Overloading 3
Week 11 - Lab 11 - Friend Functions and Friend Classes 3
- Study string class and pointer concepts
Week 12 - Lab 12 - Understand reference to an object concept 3

Week 13 - Lab 13 Labs exam2 with evaluation 3
Study the use of storage specifiers

Week 14 - Lab 14 Familiarise with global and static variables 3
Understanding separate Compilation and Namespace
OOP project Implementation with discussion for each

Week 15 - Lab 15 Student 3

Learning and Teaching Resources

Available in the
Text Library?
. Malik, D.S 2018, C++ Programming: Program Design
Including Data Structures, 8th edn, Cengage.
(ISBN 978-1-337-11756-2.)
. OOP - Learn Object Oriented Thinking and Programming,
Required Texts ISBN-10: 8090466184, Tomas Bruckner, 2013. No
. The student must have access to a standard C++ compiler.
The only supported compilers are the Linux g++ compiler
and its equivalent MinGW running under Windows.
Rernicd . Object-Oriented Programming Using C++ Fourth Edition
Texts by Joyce Farrell No
Websites
Grading Scheme
Group Grade Mark Marks (%) Definition
A - Excellent [Excellent 90 - 100 Outstanding Performance
S B - Very Good |Very Good 80 -89 Above average with some errors
Gﬁg(l::;ss C - Good Good 70-79 Sound work with notable errors
50-100 D-) i ith maj -
() Satisfactory Fair / Average 60 - 69 Fair but with major shortcomings
E - Sufficient |Pass / Acceptable | 50 - 59 Work meets minimum criteria
. . More work required but credit
F(.';ul i;oup FX - Fail Fail (Pending) (45-49) awarded
(0 -49) F - Fail Fail (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example
amark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy
NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be
the automatic rounding outlined above.

