
1

MODULE DESCRIPTION FORM

Module Information

Module Title Object-oriented programming I Module Delivery

Module Type Core ☒ Lecture

☒ Practical

Module Code IT2112

ECTS Credits 6

SWL (hr/sem) 150

Module Level UG2 Semester of Delivery 1

Administering Department Information Technology College College of Science

Module Leader Mohsin Hassan Hussein Abbas e-mail mohsin.ha@uowa.edu.iq

Module Leader’s Acad. Title Asst. Professor Module Leader’s Qualification Ph.D.

Module Tutor Mohsen Hassan Hussein Abbas e-mail mohsin.ha@uowa.edu.iq

Peer Reviewer Name Asst. Prof Haider

Mohammed Ali
e-mail hayder.alghanami@uowa.edu.iq

Scientific Committee
Approval Date

17-09-2025
Version
Number

V1.0

Relation with other Modules

Pre-requisite module Programming Fundamentals 2 Semester 2

Co-requisites module Programming Fundamentals 2 Semester 2

Dean of the College Approval Department Head Approval

mailto:mohsin.ha@uowa.edu.iq
mailto:mohsin.ha@uowa.edu.iq
mailto:hayder.alghanami@uowa.edu.iq

2

Module Aims, Learning Outcomes and Indicative Contents

Module Aims

1. Provide a sound knowledge of the underlying principles and experience in the

practical application of this course is essential for any information technology

specialist.

2. extend students with procedural programming knowledge and skills in the object-

oriented paradigm and builds experience with interpreted languages to introduce

compiled languages.

3. In addition to further shaping a solid development methodology, the course

prepares students for continued investigation into advanced programming topics.

4. develop a wide range of software solutions for real-world scenarios.

Module Learning
Outcomes

On completion of this course students will be able to:

1. identify and demonstrate an understanding of the hardware of a computer;
2. comprehend what programming is and what a programming language does;
3. know about the evolution of C++;
4. identify and design suitable classes and class hierarchies and code class

implementations in C++;
5. design and develop C++ programs using classes and class libraries;
6. apply the principles of information hiding using C++ facilities for private and

protected class attributes;
7. employ C++ facilities for dynamic storage;
8. employ C++ facilities such as operator overloading, pointers, and references;
9. develop programs using the C++ Standard for real-world.

Indicative Contents

De

1.

Topics
scription Weighting (75%)

Overview of Object Oriented Programming,
C++ or Python Basics 5.00

2. Control flow 5.00

3. Function Basics 5.00

4. Parameters and Overloading 10.00

5. Arrays and Structures 10.00

6. Objects and Classes 10.00

7. Constructors and Destructors 5.00

8. Operator Overloading 5.00

9. Friends and References 10.00

10. Strings and Pointer 5.00

11. Separate Compilation and Namespace 5.00

3

Learning and Teaching Strategies

Strategies

Overview Strategies
Object-oriented software development has become a standard methodology throughout the

software engineering discipline. Therefore, a solid grasp of object-oriented programming is
essential for any information technology specialist. While there are a variety of object-oriented
programming languages available, C++ or Python are the most widely used in this course.

This course extends the student's basic procedural design and programming knowledge and
skills into the object-oriented paradigm and builds on previous experience with interpreted
languages to introduce compiled languages. In addition to further shaping a solid development
methodology, the course prepares students for continued investigation into advanced
programming topics.

The students will be expected to learn and apply the basic concepts of object oriented design
and programming through giving lectures, practical exercises within the laboratories,
assignments about some specific topics, and small projects. Key software engineering principles
such as decomposition and component re-use will also be emphasized.

Student Workload (SWL)

Structured SWL (h/sem)

75

Structured SWL (h/w)

5

Unstructured SWL (h/sem)

72

Unstructured SWL (h/w)

5

Student workload expectations (SWL &USWL)

To do well in this subject, students are expected to commit approximately 10 hours per week including class
contact hours, independent study, and all assessment tasks. If you are undertaking additional activities, the
weekly workload hours may vary.

Total SWL (h/sem)
147 + 3 final = 150

4

Module Evaluation

 Time/

Number
Weight (Marks) Week Due

Relevant Learning

Outcome

Formative

assessment

Quizzes 5 10% (8) 3, ,6,9,11, 13 1,2,3,4

OnSite
Assignments

5 10% (5) 3,5,8,10,11 All

HomeWork 5 10% (7) 2,5,8,10,12 All

Project 1 10% (10) 12 All

Labs 5 10% (15) 3,5,7,9,11 All

Summative

assessment

Midterm Exam 2hr 10% (10) 7

Final Exam 3hr 50% (50) 16

Total assessment 100% (100 Marks)

Delivery Plan (Weekly Syllabus)

Material Covered

Weighting
(30+5=35%)

Week 1

The fundamental concepts of programming, including procedural and object-
oriented programming will be introduced. Also, consider the basic principles
behind object-oriented programming techniques, including objects, classes,
inheritance, and polymorphism. Then you will get started in programming
environment by applying what you have learned.

2

Week 2
Introduction about the basic logic components used in programs that called
control structures. It includes sequence structure, a selection structure, and
loop structure, with examples.

2

Week 3
Learn about function features, including passing arguments, returning values,
prototypes, and recursion, with examples.

2

Week 4
Present specific features of functions, such as function overloading and
reference parameters, with examples.

2

Week 5
Introduce arrays concept with a specific element in an array, index, memory
locations, the lowest address, highest address, arrays dimensions, arrays and
pointers, with examples

2

Week 6
Overview about structures, structure declaration forms, and structure
members, with examples.

2

Week 7 Mid Term Exam Revision 2

Week 8
Introduction about objects and classes, class declaration, Object declaration,
with examples.

2

Week 9
Understanding constructors and destructors, constructors and destructors
declaration with examples. 2

Week 10
Learn about overloading operators, operator declaration, unary operators,
binary operators, and operator arguments.

2

Week 11
Learn what a friend is, Declare a friend function, and Examine the benefits of
Use a friend function to access data from two classes, with examples.

2

Week 12
Understanding the three ways that a reference can be used: as a function
parameter, as a function return value, or as a stand-alone reference, with
examples.

2

Week 13
Learn about the string class , Learn about pointers, string and pointers
declaration, with examples.

2

5

Week 14
Describes namespaces and several other advanced features, including
conversion functions, explicit constructors, const and volatile member
functions, the asm keyword, and linkage specifications, with examples.

2

Week 15 Students course workload evaluation. 2
Week 16 Prepare to the final Exam 3

Delivery Plan (Weekly Lab. Syllabus)

 Material Covered Weighting (45%)

Week 1 - Lab 1

- Prepare OOP environment, overview about unified

modeling language (UML) diagram.

- Access to a standard C++ or Python compiler

- Linux g++ compiler and its equivalent MinGW running

under windows.

3

Week 2 - Lab 2

- learn how to create a main () function, work with

variables and constants, and create comments.

- learn how to produce output and process input with

Python or C++, and how to create first objects.

3

Week 3 - Lab 3

- Basic Functions and Pointers,

- Implement recursion function,

- Understand the manipulation on pointers.

3

Week 4 – Lab 4

- Understand function call by value method of parameter

passing

- Understand Pass parameters by reference method

3

Week 5 – Lab 5

- Study the use of structures

- Understand array processing in C++ or Python

- Understand heterogeneous data types

3

Week 6 – Lab 6 - Introduction to Classes and Objects 3

Week 7 – Lab 7 - Labs exam1 with evaluation 3

Week 8 – Lab 8 - Access Specifiers, Constructors and Destructors 3

Week 9 – Lab 9 - Constructor Overloading and Copy Constructors 3

Week 10 – Lab 10 - Introduction to Operator Overloading 3

Week 11 – Lab 11 - Friend Functions and Friend Classes 3

Week 12 – Lab 12
- Study string class and pointer concepts

- Understand reference to an object concept

3

6

Week 13 – Lab 13 - Labs exam2 with evaluation 3

Week 14 – Lab 14

- Study the use of storage specifiers

- Familiarise with global and static variables

- Understanding separate Compilation and Namespace

3

Week 15 – Lab 15
- OOP project Implementation with discussion for each

student 3

Learning and Teaching Resources

Text

Available in the
Library?

Required Texts

1. Malik, D.S 2018, C++ Programming: Program Design

Including Data Structures, 8th edn, Cengage.

(ISBN 978-1-337-11756-2.)

2. OOP – Learn Object Oriented Thinking and Programming,
ISBN-10: 8090466184, Tomas Bruckner, 2013.

3. The student must have access to a standard C++ compiler.

The only supported compilers are the Linux g++ compiler

and its equivalent MinGW running under Windows.

No

Recommended
Texts

4. Object-Oriented Programming Using C++ Fourth Edition

by Joyce Farrell No

Websites

Grading Scheme

Group
Grade Mark Marks (%) Definition

Success
Group
(50 - 100)

A - Excellent Excellent 90 - 100 Outstanding Performance

B - Very Good Very Good 80 - 89 Above average with some errors

C - Good Good 70 - 79 Sound work with notable errors

D -
Satisfactory Fair / Average

60 - 69 Fair but with major shortcomings

E - Sufficient Pass / Acceptable 50 - 59 Work meets minimum criteria

Fail Group
(0 – 49)

FX – Fail
Fail (Pending)

(45-49)
More work required but credit
awarded

F – Fail Fail (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example
a mark of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy
NOT to condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be
the automatic rounding outlined above.

