MODULE DESCRIPTION FORM

Module Information

Module Title Programming Fundamentals | Module Delivery
Module Type Core
Module Code IT104 Lecture
ECTS Credits 7 Practical
SWL (hr/sem) 175
Module Level UGl Semester of Delivery 1
.. . Information .
Administering Department Technology College College of Science
Module Leader Mohsin Hassan Hussein e-mail mohsin.ha@uowa.edu.iq
Module Leader’s Acad. Title Assistant Professor | Module Leader’s Qualification Ph.D.
Module Tutor Mohsen Hassan Hosein e-mail mohsin.ha@uowa.edu.iq
Asst.Prof Hyd
Peer Reviewer Name >st.rrotHyder . e-mail hayder.alghanami@uowa.edu.ig
Mohammed Ali
SDcalteentlflc Committee Approval 2025-12-20 Version Number V1

Relation with other Modules

Prerequisite module

Semester -

Co-requisites module

Semester -

) STt

Department Head Approval

1P e &yl .
.\»‘a 13‘. L
polalt Al
Shyladdi o glpidaiind] ([0 e s L o1

Vo) — et

Dean of the College Approval

mailto:mohsin.ha@uowa.edu.iq
mailto:mohsin.ha@uowa.edu.iq
mailto:hayder.alghanami@uowa.edu.iq

Module Aims, Learning Outcomes and Indicative Contents

Module Objectives

The following are some key aims and benefits of studying Programming

Fundamentals I:

1. Introduction to Programming: Introduce students to the fundamental concepts of
programming, including the role of programming languages, the software
development process, and basic programming principles.

2. Problem Solving: Teach students how to analyze problems and develop algorithms
to solve them. Emphasize problem-solving techniques, algorithm design, and
decomposition of complex problems into smaller, manageable parts.

3. Input and Output: Teach students how to interact with the user and handle standard
input/output operations, including reading from keyboard and display to screen.

4. Programming Language Basics: Familiarize students with the syntax, semantics, and
basic constructs of a programming language, such as variables, data types, control
structures (loops, conditionals), and functions.

5. Debugging and Testing: Teach students how to debug and test their programs to
identify and fix errors. Explore techniques for error detection, debugging tools, and
strategies for writing effective test cases

Module Learning
Outcomes

The following are some common learning outcomes for a Programming
Fundamentals I:

1. Knowledge of Programming Concepts: Demonstrate a solid understanding of
fundamental programming concepts, including variables, data types, control
structures, and basic algorithms.

2. Problem Solving Skills: Apply problem-solving techniques to analyze and solve
programming problems by decomposing them into smaller, manageable parts and
designing appropriate algorithms.

3. Proficiency in Programming Language: Develop proficiency in using a specific
programming language covered in the course, including understanding the
language's syntax, semantics, and basic constructs.

4. Effective Code Writing: Write clear, well-structured, and readable code that
follows coding standards and best practices, including proper indentation,
meaningful variable names, and appropriate comments.

5. Debugging and Testing Skills: Use debugging techniques and tools to identify and
fix errors in programs. Develop effective test cases and perform testing to ensure
program correctness and reliability.

Indicative Contents

The indicative contents of a Programming Fundamentals | module have a list of

common topics that shown below:

1-Introduction to Programming: Role of programming languages, Software
development process, Basic programming principles and concepts. [15 hrs.]

2-Problem Solving and Algorithm Design: Problem analysis and requirements
specification, Algorithm design techniques (e.g., topdown design, stepwise
refinement), Flowcharts and pseudocode. [20hrs]

3-Input and Output: standard input/output operations, including reading from
keyboard and display to screen. [10 hrs.]

4- Programming Language Basics: Variables and data types, Operators and expressions,
Control structures (loops, conditionals). [30 hrs.]

5- Modular Programming: Scope and lifetime of variables. [10 hrs.]
6-Debugging and Testing: Common types of programming errors, Debugging
techniques and tools. [10 hrs.]

Learning and Teaching Strategies

To teach a Programming Fundamentals | module, various strategies can be employed
to facilitate effective learning and engagement. Here are some learning and teaching
strategies commonly used in Programming Fundamentals | module:

1- Lectures: Delivering lectures to present theoretical concepts, principles, and
foundational knowledge of Programming Fundamentals |. Lectures can include
visual aids, examples, and demonstrations to enhance understanding.

2- Interactive Discussions: Encourage students to actively participate in discussions by
asking questions, sharing their thoughts, and engaging in peer-to-peer learning.
Discussions can focus on challenging concepts, real-world applications, or case
studies related to Programming Fundamentals I.

3- Hands-on Lab Sessions: Conduct practical lab sessions where students can gain
hands-on experience with Programming Fundamentals |, 4 commands, and

Strategies prograrr.1ming exercises. These sessio.ns pr.ovide an opportunity to reinforce
theoretical concepts and develop practical skills.

4- Group Projects: Assign group projects that involve designing, implementing, and
evaluating components of Programming Fundamentals |. Group projects promote
teamwork, problem-solving, and practical application of operating system
concepts.

5- Online Resources and Tutorials: Provide access to online resources, tutorials, and
interactive learning materials related to Programming Fundamentals I. This allows
students to explore additional content, reinforce their understanding, and self-
assess their progress.

6- Assessments and Feedback: Use a variety of assessment methods such as quizzes,
assignments, projects, and exams to evaluate students' understanding of
Programming Fundamentals | concepts. Provide timely and constructive feedback

to help students improve their knowledge and skills.

Student Workload (SWL)

Structured SWL (h/sem) 75 Structured SWL (h/w) 6

Unstructured SWL (h/sem) 97 Unstructured SWL (h/w) 5

Total SWL (h/sem) 172 + 3 (Final Exam)= 175

Module Evaluation

) . Relevant Learning
Time/Number Weight (Marks) Week Due
Outcome
Quizzes 5 5% (5) 3,5,7,9,11 | LO#1,#3and #4
Home Work 5 10% (10) 2,4,6,8,10 | LO#1,#3and #4
Formative
Lab 10 20% (20) Continuous | All
assessment
Onsite
. 5 5% (5) LO #5, #8 and #10
Assignments
Summative Midterm Exam 2hr 10% (10) 9 LO #1, #2 and #3
assessment Final Exam 3hr 50% (50) 17 All
Total assessment 100% (100 Marks)
Delivery Plan (Weekly Syllabus)
Material Covered
Week 1 Problem solving
Week 2 Algorithms and flow charts
Week 3 Introduction to programming Languages
Week 4 Variables, Constants, keywords, types, operators, expression, assignment
Week 5 Simple 1/0 Functions
Week 6 Conditional Statements
Week 7 If Statement
Week 8 Nested If
Week 9 Mid Exam
Week 10 | Switch Statement
Week 11 | Iterative control statements + for Statements
Week 12 | While Statement
Week 13 Do while
Week 14 | Nested Loops
Week 15 Nested while
Week 16 | Preparatory week before the final Exam

Delivery Plan (Weekly Lab. Syllabus)

Material Covered
Week 1 IDE of Programming Language
Week 2 Examples for Algorithms and flow charts
Week 3 Using the IDE for writing sample of program
Week 4 Programs by using Variables, Constants, keywords, types, operators, expression, assignment
Week 5 Writing codes for 3 Programs Appling Simple I/O Functions
Week 6 Simple Conditional Statements programs
Week 7 Writing codes of If Statement programs
Week 8 Writing codes of Nested If programs
Week 9 Mid Exam
Week 10 | Writing codes of Switch Statement programs
Week 11 | Writing codes of Iterative control statements + for Statements programs
Week 12 | Writing codes of While Statement programs
Week 13 | Writing codes of Do while programs
Week 14 | Writing codes of Nested Loops programs
Week 15 | Writing codes of Nested while programs
Learning and Teaching Resources
Text Available in the Library?
Required Texts C++: The Complete Reference, Fourth Edition, Herbert Yes
Schildt.
Recommended The C++ Programming Language, Third Edition, Bjarne No
Texts Stroustrup.
Websites https://stackoverflow.com/

Grading Scheme

Group Grade Marks Marks % Definition
A - Excellent Excellent 90 - 100 Outstanding Performance
B - Very Good Very Good 80 -89 Above average with some errors
Success Group -
(50 - 100) C - Good Good 70-79 Sound work with notable errors
D - Satisfactory Fair / Average 60 - 69 Fair but with major shortcomings
E - Sufficient Pass / Acceptable | 50-59 Work meets minimum criteria
Fail Group FX - Fail Fail (Pending) (45-49) More work required but credit awarded
(0-49) F - Fail Fail (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark
of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to
condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic
rounding outlined above.

	Programming Fundamentals I
	Core
	IT104
	7
	175

