
1

MODULE DESCRIPTION FORM
Module Information

Module Title Programming Fundamentals I Module Delivery

Module Type Core

Lecture
Practical

Module Code IT104

ECTS Credits 7

SWL (hr/sem) 175

Module Level UG1 Semester of Delivery 1

Administering Department Information
Technology College College of Science

Module Leader Mohsin Hassan Hussein e-mail mohsin.ha@uowa.edu.iq

Module Leader’s Acad. Title Assistant Professor Module Leader’s Qualification Ph.D.

Module Tutor Mohsen Hassan Hosein e-mail mohsin.ha@uowa.edu.iq

Peer Reviewer Name Asst.Prof Hyder
Mohammed Ali e-mail hayder.alghanami@uowa.edu.iq

Scientific Committee Approval
Date 2025-12-20 Version Number V1

Relation with other Modules

Prerequisite module - Semester -

Co-requisites module - Semester -

Dean of the College Approval Department Head Approval

mailto:mohsin.ha@uowa.edu.iq
mailto:mohsin.ha@uowa.edu.iq
mailto:hayder.alghanami@uowa.edu.iq

2

Module Aims, Learning Outcomes and Indicative Contents

Module Objectives

The following are some key aims and benefits of studying Programming
Fundamentals I:
1. Introduction to Programming: Introduce students to the fundamental concepts of

programming, including the role of programming languages, the software
development process, and basic programming principles.

2. Problem Solving: Teach students how to analyze problems and develop algorithms
to solve them. Emphasize problem-solving techniques, algorithm design, and
decomposition of complex problems into smaller, manageable parts.

3. Input and Output: Teach students how to interact with the user and handle standard
input/output operations, including reading from keyboard and display to screen.

4. Programming Language Basics: Familiarize students with the syntax, semantics, and
basic constructs of a programming language, such as variables, data types, control
structures (loops, conditionals), and functions.

5. Debugging and Testing: Teach students how to debug and test their programs to
identify and fix errors. Explore techniques for error detection, debugging tools, and
strategies for writing effective test cases

Module Learning
Outcomes

The following are some common learning outcomes for a Programming
Fundamentals I:

1. Knowledge of Programming Concepts: Demonstrate a solid understanding of
fundamental programming concepts, including variables, data types, control
structures, and basic algorithms.

2. Problem Solving Skills: Apply problem-solving techniques to analyze and solve
programming problems by decomposing them into smaller, manageable parts and
designing appropriate algorithms.

3. Proficiency in Programming Language: Develop proficiency in using a specific
programming language covered in the course, including understanding the
language's syntax, semantics, and basic constructs.

4. Effective Code Writing: Write clear, well-structured, and readable code that
follows coding standards and best practices, including proper indentation,
meaningful variable names, and appropriate comments.

5. Debugging and Testing Skills: Use debugging techniques and tools to identify and
fix errors in programs. Develop effective test cases and perform testing to ensure
program correctness and reliability.

Indicative Contents

The indicative contents of a Programming Fundamentals I module have a list of
common topics that shown below:
1-Introduction to Programming: Role of programming languages, Software

development process, Basic programming principles and concepts. [15 hrs.]
2-Problem Solving and Algorithm Design: Problem analysis and requirements

specification, Algorithm design techniques (e.g., topdown design, stepwise
refinement), Flowcharts and pseudocode. [20hrs]

3-Input and Output: standard input/output operations, including reading from
keyboard and display to screen. [10 hrs.]

4- Programming Language Basics: Variables and data types, Operators and expressions,
Control structures (loops, conditionals). [30 hrs.]

3

5- Modular Programming: Scope and lifetime of variables. [10 hrs.]
6-Debugging and Testing: Common types of programming errors, Debugging

techniques and tools. [10 hrs.]

Learning and Teaching Strategies

Strategies

To teach a Programming Fundamentals I module, various strategies can be employed
to facilitate effective learning and engagement. Here are some learning and teaching
strategies commonly used in Programming Fundamentals I module:
1- Lectures: Delivering lectures to present theoretical concepts, principles, and

foundational knowledge of Programming Fundamentals I. Lectures can include
visual aids, examples, and demonstrations to enhance understanding.

2- Interactive Discussions: Encourage students to actively participate in discussions by
asking questions, sharing their thoughts, and engaging in peer-to-peer learning.
Discussions can focus on challenging concepts, real-world applications, or case
studies related to Programming Fundamentals I.

3- Hands-on Lab Sessions: Conduct practical lab sessions where students can gain
hands-on experience with Programming Fundamentals I, 4 commands, and
programming exercises. These sessions provide an opportunity to reinforce
theoretical concepts and develop practical skills.

4- Group Projects: Assign group projects that involve designing, implementing, and
evaluating components of Programming Fundamentals I. Group projects promote
teamwork, problem-solving, and practical application of operating system
concepts.

5- Online Resources and Tutorials: Provide access to online resources, tutorials, and
interactive learning materials related to Programming Fundamentals I. This allows
students to explore additional content, reinforce their understanding, and self-
assess their progress.

6- Assessments and Feedback: Use a variety of assessment methods such as quizzes,
assignments, projects, and exams to evaluate students' understanding of
Programming Fundamentals I concepts. Provide timely and constructive feedback
to help students improve their knowledge and skills.

Student Workload (SWL)

Structured SWL (h/sem) 75 Structured SWL (h/w) 6

4

Unstructured SWL (h/sem) 97 Unstructured SWL (h/w) 5

Total SWL (h/sem) 172 + 3 (Final Exam)= 175

Module Evaluation

Time/Number Weight (Marks) Week Due

Relevant Learning

Outcome

Formative
assessment

Quizzes 5 5% (5) 3,5,7,9,11 LO #1, #3 and #4

Home Work 5 10% (10) 2,4,6,8,10 LO #1, #3 and #4

Lab 10 20% (20) Continuous All

Onsite

Assignments
5 5% (5) LO #5, #8 and #10

Summative

assessment

Midterm Exam 2hr 10% (10) 9 LO #1, #2 and #3

Final Exam 3hr 50% (50) 17 All

Total assessment 100% (100 Marks)

Delivery Plan (Weekly Syllabus)

 Material Covered

Week 1 Problem solving

Week 2 Algorithms and flow charts

Week 3 Introduction to programming Languages

Week 4 Variables, Constants, keywords, types, operators, expression, assignment

Week 5 Simple I/O Functions

Week 6 Conditional Statements

Week 7 If Statement

Week 8 Nested If

Week 9 Mid Exam

Week 10 Switch Statement

Week 11 Iterative control statements + for Statements

Week 12 While Statement

Week 13 Do while

Week 14 Nested Loops

Week 15 Nested while

Week 16 Preparatory week before the final Exam

5

Delivery Plan (Weekly Lab. Syllabus)

 Material Covered

Week 1 IDE of Programming Language

Week 2 Examples for Algorithms and flow charts

Week 3 Using the IDE for writing sample of program

Week 4 Programs by using Variables, Constants, keywords, types, operators, expression, assignment

Week 5 Writing codes for 3 Programs Appling Simple I/O Functions

Week 6 Simple Conditional Statements programs

Week 7 Writing codes of If Statement programs

Week 8 Writing codes of Nested If programs

Week 9 Mid Exam

Week 10 Writing codes of Switch Statement programs

Week 11 Writing codes of Iterative control statements + for Statements programs

Week 12 Writing codes of While Statement programs

Week 13 Writing codes of Do while programs

Week 14 Writing codes of Nested Loops programs

Week 15 Writing codes of Nested while programs

Learning and Teaching Resources
 Text Available in the Library?

Required Texts
C++: The Complete Reference, Fourth Edition, Herbert
Schildt.

Yes

Recommended
Texts

The C++ Programming Language, Third Edition, Bjarne
Stroustrup.

No

Websites https://stackoverflow.com/

6

 Grading Scheme
Group Grade Marks Marks % Definition

Success Group
(50 - 100)

A - Excellent Excellent 90 - 100 Outstanding Performance
B - Very Good Very Good 80 - 89 Above average with some errors
C - Good Good 70 - 79 Sound work with notable errors
D - Satisfactory Fair / Average 60 - 69 Fair but with major shortcomings
E - Sufficient Pass / Acceptable 50 - 59 Work meets minimum criteria

Fail Group
(0 – 49)

FX – Fail Fail (Pending) (45-49) More work required but credit awarded
F – Fail Fail (0-44) Considerable amount of work required

Note: Marks Decimal places above or below 0.5 will be rounded to the higher or lower full mark (for example a mark
of 54.5 will be rounded to 55, whereas a mark of 54.4 will be rounded to 54. The University has a policy NOT to
condone "near-pass fails" so the only adjustment to marks awarded by the original marker(s) will be the automatic
rounding outlined above.

	Programming Fundamentals I
	Core
	IT104
	7
	175

